User: Guest


Global Market Trajectory & Analytics



Number of executives repeatedly engaged by snail & email outreach*



Interactions with Platform & by Email *



Unique # Participated *



Responses Validated *



* Login to view program details and full enterprise executive list.

  •  DATE

    JULY 2020



  •  PAGES




  •  PRICE

    USD $5450


Impact of Pandemic & Economic Slowdown

Monitor Market Dynamics!
Early March 2020, we reached out to senior enterprise executives who are driving strategy, business development, marketing, sales, product management, technology and operations at competitive firms worldwide. Our ongoing survey is focused on how this will this affect their business ecosystems. We invite you to participate in our survey and add to collective perspectives. Market movements are tracked for 2020, 2021 and broadly for the period of 2022 through 2025. Critical changes are monitored dynamically for the rest of this year. Updated analytics will reflect new and evolving market realities. Our first update scheduled for May 2020 and another in the Fall. Clients receive complimentary updates during 2020. If your company is a recent client for this project, we may have already reached out to your colleagues to participate in our program. If you're an active player in the space but hasn't yet subscribed to our project, we invite you to participate and share your perspectives. Please sign-up here.

The global market for Hydrogel is projected to reach US$15.3 billion by 2025, driven by their growing use in wound care products and drug delivery systems (DDS). Defined as a three-dimensional (3D) hydrophilic polymer capable of holding large amounts of water, hydrogel is valuable in biological applications as they resemble natural tissue and their high water content. Strong R&D interest is already underway for hydrogel biomaterials. New developments in hydrogel design and hydrogel synthesis are resulting in the development of hydrogels with mechanical properties. Superporous comb-type grafted hydrogels with fast response times; hybrid graft copolymers based self-assembling hydrogels; protein based hydrogels' and hybrid hydrogels are the emerging new future of smart hydrogel based biomaterials. Stimuli-sensitive hydrogels, especially polypeptide based responsive hydrogels hold promising potential. Protein hydrogel are more biocompatible than synthetic hydrogel as they do not require the use of oxic chemical crosslinkers. This represents a key growth opportunity in the market given that traditional hydrogels have been largely limited by their poor mechanical properties and slow response times to stimuli. Temperature-sensitive hydrogels especially will find attractive opportunities in biomedicine.

Wound dressings currently remain a popular application area with hydrogel being effective for treating dry necrotic wounds and rapid healing of burn wounds. Hydrogel enables painless debridement of infected tissue and provides a moist wound environment for faster healing. Chitosan-based hydrogels, in this regard, are growing in popularity for their biocompatible, antimicrobial, and hemostatic effects. Acellular Hydrogel is especially valuable in accelerated healing of third-degree burn wounds and is a welcome substitute for complicated and infection prone skin grafts. Encouraging progress is being made in the use of hydrogels for targeted & controlled drug delivery. Hydrogels can prolong drug release kinetics. Their porosity and aqueous features make them perfect biocompatible drug delivery vehicles. Chitosan-based hydrogels can be loaded with active drug compounds like growth factors or stem cells that are important in providing scaffold for cell growth. The growing focus on controlled and targeted drug delivery systems in the field of cardiology, oncology, immunology, and pain management bodes well for future growth in the market. Some of the physical properties of hydrogel that can be manipulated and tuned to suit drug delivery needs include porosity, swelling and elasticity in response to stimuli such as temperature, solvent quality, pH, electric field; resistance to dissolution; free diffusion of solute molecules in water; among others. These properties help in controlled drug release and protect from drug degradation, thereby making them highly effective vehicles for drug delivery systems. Some of the types of hydrogels development for drug delivery include DNA-hydrogels; supramolecular hydrogels; bio-inspired hydrogels; and multi-functional and stimuli-responsive hydrogels. New emerging uses in contact lenses and tissue engineering will also benefit growth in the market in the coming years. The United States and Europe represent large markets worldwide with a combined share of 52.4% of the market. China ranks as the fastest growing market with a CAGR of 7.3% over the analysis period supported by the government's focus on revolutionizing biomedical engineering in the country. The country today ranks as the top country for biomedical research encouraged by a permissive regulatory climate.
» Raw Material (Natural, Synthetic, and Hybrid) » Composition (Polyacrylate, Polyacrylamide, Silicon, and Other Compositions) » and Application (Agriculture, Healthcare & Hygiene, Contact Lenses, Drug Delivery, Tissue Engineering, and Other Applications)
» World » United States » Canada » Japan » China » Europe » France » Germany » Italy » United Kingdom » Spain » Russia » and Rest of Europe » Asia-Pacific » Australia » India » South Korea » and Rest of Asia-Pacific » Latin America » Argentina » Brazil » Mexico » and Rest of Latin America » Middle East » Iran » Israel » Saudi Arabia » United Arab Emirates » and Rest of Middle East » and Africa


Users of our portal have insider access to our data stacks based on project relevance and engagement status. Tiered access is offered to data stacks, managed based on user status - Opt-in, Active Panelist, Inactive Panelist, Active Client or Inactive Client.

  • A: 
  • B: 
  • C: 
  • D: 
  • E: 


Our robust permission-based engagement strategy requires a one-time double opt-in and/or re-consent for all users. We will re-establish consent once a year from date of last use. Both these practices exceed GDPR mandates.

What we store: Primary coordinates such as email, company address and phone. In-house developed influencer rank.
How we store: Encrypted and additionally secured by firewalls.
How we use your data: Only to contact you directly. We never share your coordinates with any individual or entity outside our company for any reason.
Privacy queries: